metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C42⋊27D6, C6.1422+ (1+4), C4⋊C4⋊17D6, C4⋊D12⋊5C2, (C4×C12)⋊2C22, D6⋊D4⋊28C2, Dic3⋊D4⋊46C2, C12⋊D4⋊38C2, C42⋊2C2⋊8S3, C42⋊3S3⋊1C2, D6⋊C4⋊24C22, C22⋊C4.41D6, D6.D4⋊44C2, C2.67(D4○D12), (C2×D12)⋊10C22, (C2×C6).255C24, Dic3⋊C4⋊5C22, (C2×C12).195C23, (C22×C6).69C23, C23.71(C22×S3), C3⋊4(C22.54C24), (S3×C23).70C22, C22.276(S3×C23), (C22×S3).114C23, (C2×Dic3).131C23, (S3×C2×C4)⋊28C22, (C3×C4⋊C4)⋊34C22, (C3×C42⋊2C2)⋊10C2, (C2×C4).211(C22×S3), (C2×C3⋊D4).75C22, (C3×C22⋊C4).80C22, SmallGroup(192,1270)
Series: Derived ►Chief ►Lower central ►Upper central
Subgroups: 864 in 252 conjugacy classes, 91 normal (16 characteristic)
C1, C2 [×3], C2 [×6], C3, C4 [×9], C22, C22 [×22], S3 [×5], C6 [×3], C6, C2×C4 [×6], C2×C4 [×6], D4 [×12], C23, C23 [×8], Dic3 [×3], C12 [×6], D6 [×19], C2×C6, C2×C6 [×3], C42, C22⋊C4 [×3], C22⋊C4 [×9], C4⋊C4 [×3], C4⋊C4 [×3], C22×C4 [×3], C2×D4 [×12], C24, C4×S3 [×3], D12 [×9], C2×Dic3 [×3], C3⋊D4 [×3], C2×C12 [×6], C22×S3 [×2], C22×S3 [×3], C22×S3 [×3], C22×C6, C22≀C2 [×3], C4⋊D4 [×6], C22.D4 [×3], C42⋊2C2, C42⋊2C2, C4⋊1D4, Dic3⋊C4 [×3], D6⋊C4 [×9], C4×C12, C3×C22⋊C4 [×3], C3×C4⋊C4 [×3], S3×C2×C4 [×3], C2×D12 [×9], C2×C3⋊D4 [×3], S3×C23, C22.54C24, C4⋊D12, C42⋊3S3, D6⋊D4 [×3], Dic3⋊D4 [×3], D6.D4 [×3], C12⋊D4 [×3], C3×C42⋊2C2, C42⋊27D6
Quotients:
C1, C2 [×15], C22 [×35], S3, C23 [×15], D6 [×7], C24, C22×S3 [×7], 2+ (1+4) [×3], S3×C23, C22.54C24, D4○D12 [×3], C42⋊27D6
Generators and relations
G = < a,b,c,d | a4=b4=c6=d2=1, ab=ba, cac-1=a-1b2, dad=ab2, cbc-1=a2b, dbd=a2b-1, dcd=c-1 >
(1 31 4 28)(2 35 5 26)(3 33 6 30)(7 34 10 25)(8 32 11 29)(9 36 12 27)(13 41 16 43)(14 47 17 39)(15 37 18 45)(19 38 22 46)(20 44 23 42)(21 40 24 48)
(1 19 10 13)(2 23 11 17)(3 21 12 15)(4 22 7 16)(5 20 8 14)(6 24 9 18)(25 41 31 38)(26 44 32 47)(27 37 33 40)(28 46 34 43)(29 39 35 42)(30 48 36 45)
(1 2 3)(4 5 6)(7 8 9)(10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)
(1 6)(2 5)(3 4)(7 12)(8 11)(9 10)(13 21)(14 20)(15 19)(16 24)(17 23)(18 22)(25 30)(26 29)(27 28)(31 36)(32 35)(33 34)(37 41)(38 40)(43 45)(46 48)
G:=sub<Sym(48)| (1,31,4,28)(2,35,5,26)(3,33,6,30)(7,34,10,25)(8,32,11,29)(9,36,12,27)(13,41,16,43)(14,47,17,39)(15,37,18,45)(19,38,22,46)(20,44,23,42)(21,40,24,48), (1,19,10,13)(2,23,11,17)(3,21,12,15)(4,22,7,16)(5,20,8,14)(6,24,9,18)(25,41,31,38)(26,44,32,47)(27,37,33,40)(28,46,34,43)(29,39,35,42)(30,48,36,45), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,6)(2,5)(3,4)(7,12)(8,11)(9,10)(13,21)(14,20)(15,19)(16,24)(17,23)(18,22)(25,30)(26,29)(27,28)(31,36)(32,35)(33,34)(37,41)(38,40)(43,45)(46,48)>;
G:=Group( (1,31,4,28)(2,35,5,26)(3,33,6,30)(7,34,10,25)(8,32,11,29)(9,36,12,27)(13,41,16,43)(14,47,17,39)(15,37,18,45)(19,38,22,46)(20,44,23,42)(21,40,24,48), (1,19,10,13)(2,23,11,17)(3,21,12,15)(4,22,7,16)(5,20,8,14)(6,24,9,18)(25,41,31,38)(26,44,32,47)(27,37,33,40)(28,46,34,43)(29,39,35,42)(30,48,36,45), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,6)(2,5)(3,4)(7,12)(8,11)(9,10)(13,21)(14,20)(15,19)(16,24)(17,23)(18,22)(25,30)(26,29)(27,28)(31,36)(32,35)(33,34)(37,41)(38,40)(43,45)(46,48) );
G=PermutationGroup([(1,31,4,28),(2,35,5,26),(3,33,6,30),(7,34,10,25),(8,32,11,29),(9,36,12,27),(13,41,16,43),(14,47,17,39),(15,37,18,45),(19,38,22,46),(20,44,23,42),(21,40,24,48)], [(1,19,10,13),(2,23,11,17),(3,21,12,15),(4,22,7,16),(5,20,8,14),(6,24,9,18),(25,41,31,38),(26,44,32,47),(27,37,33,40),(28,46,34,43),(29,39,35,42),(30,48,36,45)], [(1,2,3),(4,5,6),(7,8,9),(10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48)], [(1,6),(2,5),(3,4),(7,12),(8,11),(9,10),(13,21),(14,20),(15,19),(16,24),(17,23),(18,22),(25,30),(26,29),(27,28),(31,36),(32,35),(33,34),(37,41),(38,40),(43,45),(46,48)])
Matrix representation ►G ⊆ GL8(𝔽13)
0 | 0 | 3 | 7 | 0 | 0 | 0 | 0 |
0 | 0 | 6 | 10 | 0 | 0 | 0 | 0 |
3 | 7 | 0 | 0 | 0 | 0 | 0 | 0 |
6 | 10 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 | 12 | 1 | 11 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 12 | 1 | 11 |
0 | 0 | 0 | 0 | 1 | 0 | 1 | 12 |
0 | 12 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 12 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 1 | 12 | 0 | 12 |
12 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 12 | 1 |
G:=sub<GL(8,GF(13))| [0,0,3,6,0,0,0,0,0,0,7,10,0,0,0,0,3,6,0,0,0,0,0,0,7,10,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,12,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,11,0,1],[0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,12,1,1,0,0,0,0,1,0,12,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,11,12],[0,1,0,0,0,0,0,0,12,12,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,1,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12],[12,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,12,12,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,12,0,1,0,0,0,0,0,0,12,12,0,0,0,0,0,0,0,1] >;
33 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | ··· | 2I | 3 | 4A | ··· | 4F | 4G | 4H | 4I | 6A | 6B | 6C | 6D | 12A | ··· | 12F | 12G | 12H | 12I |
order | 1 | 2 | 2 | 2 | 2 | 2 | ··· | 2 | 3 | 4 | ··· | 4 | 4 | 4 | 4 | 6 | 6 | 6 | 6 | 12 | ··· | 12 | 12 | 12 | 12 |
size | 1 | 1 | 1 | 1 | 4 | 12 | ··· | 12 | 2 | 4 | ··· | 4 | 12 | 12 | 12 | 2 | 2 | 2 | 8 | 4 | ··· | 4 | 8 | 8 | 8 |
33 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + |
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | S3 | D6 | D6 | D6 | 2+ (1+4) | D4○D12 |
kernel | C42⋊27D6 | C4⋊D12 | C42⋊3S3 | D6⋊D4 | Dic3⋊D4 | D6.D4 | C12⋊D4 | C3×C42⋊2C2 | C42⋊2C2 | C42 | C22⋊C4 | C4⋊C4 | C6 | C2 |
# reps | 1 | 1 | 1 | 3 | 3 | 3 | 3 | 1 | 1 | 1 | 3 | 3 | 3 | 6 |
In GAP, Magma, Sage, TeX
C_4^2\rtimes_{27}D_6
% in TeX
G:=Group("C4^2:27D6");
// GroupNames label
G:=SmallGroup(192,1270);
// by ID
G=gap.SmallGroup(192,1270);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,758,219,184,1571,570,192,6278]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^4=c^6=d^2=1,a*b=b*a,c*a*c^-1=a^-1*b^2,d*a*d=a*b^2,c*b*c^-1=a^2*b,d*b*d=a^2*b^-1,d*c*d=c^-1>;
// generators/relations